
Spatial analysis in R
Christopher Jarvis

Spatial data models

In order to use spatial data we need a way of representing the spatial
information called a data model. There are two main data models for
representing spatial data: vector and raster.1 1 If you want to learn more about vec-

tor and raster data with R, then there
is a book called Geocomputation
in R which can be accessed for free
online. This book covers a range of
ways to interact and manipulate with
spatial data in R.

Vector data consists of points, lines, and polygons. Vector data is
often used to represent discrete spatial objects such as household loca-
tions, roads, or countries. In this course, we will focus predominantly
on using vector data in R. A common format for vector data is the
shapefile.

• Points: Houses or disease cases
• Lines: Roads or rivers
• Polygons: Countries or administrative areas

Raster data consists of splitting an area up into grids and giving each
grid a value. It is often used for measures such as population density,
land cover, or elevation. We will not cover raster data in R2. Raster 2 There is a very good package called

raster which can be used for interact-
ing with raster data in R.

data is really just an image and because of this, there is quite a bit
of overlap between spatial statistics and image processing methods.
A common form of raster data is satellite imagery and they can be
stored as a GeoTIFF file.

Points Lines Polygons

Raster Values

14 2 36

93 79 13

53 21 79

Raster Image

Figure 1: Spatial data types

https://geocompr.robinlovelace.net/
https://geocompr.robinlovelace.net/

spatial analysis in r 2

Coordinate reference systems

Coordinate reference systems (CRS) define how the spatial data re-
lates to the Earth (or other objects). In order to represent space, a
system is required so that we can uniquely identify different locations.
A CRSs can be categorised by whether it is geographic or projected.

82.5°W 82.4°W 82.3°W 82.2°W 82.1°W

31.5°N

31.6°N

31.7°N

31.8°N

31.9°N

Geographic CRS in degrees

Figure 2: Map of geographic CRS

Geographic CRSs can represent any location on the Earth’s surface
and consist of longitude and latitude. Longitude represents the East
and West directions and latitude represents the North and South
directions. Longitude and latitude coordinates are represented in de-
grees, which can make calculating and interpreting distances more dif-
ficult as the distance is based on a spherical rather than a flat shape.

Projected CRSs are produced by transforming the 3 dimensional sur-
face of the Earth onto a two dimensional flat surface. Transitioning
between 3 and 2 dimensions, inevitably results in a loss of structure
and information such as area, distance, or shape. As these CRSs are
based on a flat surface, they can be represented in distances such as
metres, kms, or miles; this can make calculating and interpreting dis-
tances easier. Due to this, reprojecting data to a projected coordinate
system is often done before calculating distances.

360000 380000 400000

3480000

3490000

3500000

3510000

3520000

3530000

3540000

Projected CRS in metres

Figure 3: Map of projected CRS

Each CRS is related to an EPSG code or a definition called a proj4string.
The EPSG code and the proj4string are just names that allow people
and computers to be sure they are using the same coordinates systems.

CRSs can cause confusion when first presented, but in practice the
main things to keep in mind are:

• When working on a global scale a geographic CRS is required.
• The most common geographic CRS is WGS 84 which has an EPSG

code of 4326 (A good code to learn.)
• When calculating distances and working at a country level a pro-

jected coordinate system is a good idea.
• The most common projected CRS is Universal Transverse Mercator

(UTM), each country will have one or more UTM.
• If you work in only one specific country then learn the UTM code

for that country. Otherwise search for the country specific UTM to
find out the relevant code.

spatial analysis in r 3

R for spatial analyses

R has become a very capable software for spatial analyses. It allows
for a wide range of simple and complex spatial manipulation and anal-
yses. We will first focus on two packages for working with spatial data.
In the previous sessions we learned about ggplot2 for visualisation,
readr for reading/writing data, and dplyr for data manipulation. In
this session, we will learn about the package tmap for visualising spa-
tial data and the sf package for reading/writing and manipulating
spatial data.

Packages

The sf package simplifies the process for working with and manipulat-
ing vector spatial data in R. The package allows for reading/writing
and manipulating spatial data.

It stores the data as an sf object which is a data frame. This means
that the dplyr verbs that you learned in the previous session can be
used on the spatial data. Therefore, without any extra knowledge you
are already able to filter the spatial data using dplyr. The sf package
also provides its own functions for data manipulation.

The tmap package provide functions to do thematic mapping in R. It
has a similar syntax to ggplot2, with the main difference being that
you can provide multiple spatial shapes in an easy way. We will be
using tmap to create some maps.3 3 When loading multiple packages a

semi colon can be used to put the
function on the same line.library(dplyr);library(ggplot2);library(sf);library(tmap);

Reading and writing spatial data

Spatial data can be read into R using the st_read() command4. 4 Most of the functions within the sf
package start with the prefix st_This command works in the same way as the read_csv() command.

The sf package can be used to read and write a range of spatial data
formats, including shapefile and geojson. The st_write() command
can be used to write spatial files. Writing files requires the option
delete_layer=TRUE to tell R to overwrite the existing file.

Reading/writing shapefiles

adm2 <- st_read('Data/haiti/adm2.shp')
st_write(adm2, 'Data/haiti/adm2new.shp', delete_layer=TRUE)

spatial analysis in r 4

Reading and projecting a csv file

Spatial data is often provided as a csv file with columns for coordi-
nates. Turning this type of data into a spatial object requires an extra
step to tell R what columns the coordinates are in. This code reads in
the csv file and turns it into a spatial file.

hc <- read_csv('Data/haiti/haiti-healthsites.csv') # Read data
hc <- st_as_sf(hc, coords = c("x", "y")) # Turn into spatial data

Checking and setting the projection of the data

When you read a spatial file into R it will hopefully have a projection
file. The projection of the data can be checked using the st_crs() to
check the crs of an object and st_set_crs() to set the crs when the
object does not have a crs.

st_crs(hc) # Check the CRS
hc <- hc %>% st_set_crs(4326) # Set the CRS
st_crs(hc) # Recheck

If you know the crs of the data but it hasn’t been assigned then the
st_set_crs() command can be used to set the crs. This command
should only be used when the data does not have a crs. If the data
already has a crs then the st_set_crs() command will change the
name of the crs but will not actually change the projection. In order
to change the projection the st_transform() function is needed. If
you wanted to project the health centre data to UTM you would use
the EPSG code 32618 as follows:

Project data
hc_utm <- hc %>%

st_transform(crs = 32618)
st_crs(hc_utm) # Check the CRS

spatial analysis in r 5

Basic plotting

You can create basic plots of the spatial data using the base R plot-
ting function plot(). The default is to plot every variable in the data
frame. To avoid this you can use the function st_geometry() inside of
the plot() function.

plot(adm2) # plots every variable
plot(st_geometry(hc)) # plots just the shape

You can create multi layer plots using the option add=TRUE.

plot(st_geometry(adm2))
plot(st_geometry(hc), add = T) # add to the existing plot

Exercise 1

1. Read in rivers.shp using st_read().
2. Check the crs with st_crs(). Should you rename to river_utm?
3. Explore the object using head(), tail(), and str(), what struc-

ture does it have?.
4. Check the crs of adm2.
5. Create an object adm2_utm where the data is reprojected to EPSG

code 32618.
6. Do a basic plot of adm2_utm spatial data using plot() and st_geometry().
7. Add the points from the hc object.
8. Add the points from the hc_utm object.
9. Add the rivers to the map.

spatial analysis in r 6

Solution

library(dplyr);library(ggplot2);library(sf);library(tmap);

rivers_utm <- st_read('Data/haiti/rivers.shp')
st_crs(rivers_utm)
head(rivers_utm)
tail(rivers_utm)
str(rivers_utm)

st_crs(adm2)
adm2_utm <- st_transform(adm2, crs = 32618)

plot(st_geometry(adm2_utm))
plot(st_geometry(hc), add = T)
plot(st_geometry(hc_utm), add = T)
plot(st_geometry(rivers_utm), add = T, col = "blue")

spatial analysis in r 7

Making maps with ggplots

The ggplot2 package can also be used with spatial data. The main
functions is the geom_sf which will plot simple features data.

We can create a basic map just by passing the spatial dataframe
into ggplot and adding the geom_sf function.

ggplot(adm2_utm) +
geom_sf()

To create a choropleth map you need to use the fill argument in
the aes of the geom_sf function.

ggplot(adm2_utm) +
geom_sf(aes(fill = female))

18.0°N

18.5°N

19.0°N

19.5°N

20.0°N

74.5°W74.0°W73.5°W73.0°W72.5°W72.0°W

female

1e+05

2e+05

3e+05

4e+05

5e+05

Figure 4: Choropleth map - ggplot2

To create a map with points and lines on, we can add additional
geom_sf functions but we need to tell ggplot2 to plot different data.
When using geom_sf we do not need to explicitly say the x and y co-
ordinate to plot as that information is stored in the spatial dataframe.

ggplot(adm2_utm) +
geom_sf() +
geom_sf(data = hc_utm) +
geom_sf(data = rivers_utm, color = "blue")

18.0°N

18.5°N

19.0°N

19.5°N

20.0°N

74.5°W 74.0°W 73.5°W 73.0°W 72.5°W 72.0°W

Figure 5: Detailed Haiti map - gg-
plot2

The maps can be saved in the same way as before using the ggsave
function from ggplot2.

spatial analysis in r 8

Making maps with tmap

The tmap package is used to create thematics map in R. It is similar
in style to ggplot2.

Syntax

All tmap plots begin with the command tm_shape(). This tells R
which object you want to map. Once you’ve defined the tm_shape()
add extra functions to tell R how you want the map to be created. For
example, to create a basic map of the admin areas. You tell R that
adm2_utm is the object you want to map, and add tm_polygons() to
tell R to create polygons in the map.

tm_shape(adm2_utm) + # What you want to map
tm_polygons() # How you want to map it

Figure 6: Basic Haiti map - tmap

There are several different commands for different types of maps.

Table 1: tmap drawing commands

Data type Command Description

polygon tm_polygons Draw polygons
polygon tm_borders Draws polygon borders
polygon tm_fill Fills the polygons
line tm_lines Draws lines
point tm_bubbles Draws bubbles
point tm_squares Draws squares
point tm_dots Draws dots
point tm_markers Draws markers

spatial analysis in r 9

Choropleth maps

Choropleth maps can be created easily by defining the variable that
you want to visually display as follows:

tm_shape(adm2_utm) +
tm_polygons("urban")

urban
1 to 200,000
200,001 to 400,000
400,001 to 600,000
600,001 to 800,000
800,001 to 1,000,000

Figure 7: Unscaled choropleth map

A common issue with choropleth maps is that if they are not adjusted
for the total population in each area. When this is the case, the maps
tend to only represent population density rather than the attribute
you are interested in. To resolve this, you can scale the value by the
total population. For instance, we can represent the percentage of
urban or female individuals in the population. In tmap all that is
required is that you concatenate the variable names using the c()
function. The titles for the legend can also be improved by using the
title option. Here we also adjust the legend using tm_legend() to
define that it resides in the top left of the map. You build the plot up
by adding extra elements. These elements will depend on the type of
spatial data you are using.

tm_shape(adm2_utm) +
tm_polygons(c("urbanpct", "femalepct"), title = c("Urban %", "Female %")) +

tm_legend(legend.position = c("left", "top"))

Urban %
0 to 20
20 to 40
40 to 60
60 to 80
80 to 100

Female %
44 to 46
46 to 48
48 to 50
50 to 52
52 to 54

Figure 8: Scaled choropleth for two
variables

spatial analysis in r 10

Adding extra shapes

Extra spatial shapes can be added easily by using the tm_shape()
command again as follows.

tm_shape(adm2_utm) +
tm_polygons() +

tm_shape(rivers_utm) +
tm_lines(col = "blue") +

tm_shape(hc_utm) +
tm_dots()

Figure 9: Haiti with river and health
centres

Saving maps

To save a map you store the map as an object and then use the
tmap_save() function. The maps can be stored as a png, jpg, pdf,
svg, bmp, or tiff. You can specify the width, height, and the unit type
(“cm”, “in”, “mm”).

tm <- tm_shape(adm2_utm) +
tm_polygons(c("urbanpct", "femalepct")) +

tm_legend(legend.position = c("left", "top"))

tmap_save(tm, "output/Haiti_choro.png", width=10, height=10, units = "cm")

For more with tmap see the webpage https://r-tmap.github.io/
tmap/index.html.

Exercise 2

1. Create a new variable for the percentage of under 18s
2. Create a choropleth of the percentage of under 18s using ggplot2
3. Create a choropleth of the percentage of under 18s using tmap
4. Type ?tmap-element into the console and see if you can figure out

how to add a scale bar.
5. Save the map in the output folder as a png.
6. See if the image exists.

https://r-tmap.github.io/tmap/index.html
https://r-tmap.github.io/tmap/index.html

spatial analysis in r 11

Solution

adm2_utm <- adm2_utm %>%
mutate(under18pct = undr_18/total)

ggplot2
ggplot(adm2_utm) +

geom_sf(aes(fill = under18pct))

tmap
tm_shape(adm2_utm) +

tm_polygons("under18pct", title="% of under 18's ") +
tm_legend(legend.position = c("left", "top")) +
tm_scale_bar(position = c("left", "center")) -> tm

tmap_save(tm, "output/Haiti_under18.png", width=10, height=10, units = "cm")

spatial analysis in r 12

Spatial data manipulation

dplyr verbs

The dplyr commands can be used on the spatial data frame. For
instance, we can use the filter() command to create a subset of the
data. This can be useful when we want to highlight a specific area of a
map.

west_utm <- adm2_utm %>%
filter(adm1_en == "West")

tm_shape(adm2_utm) +
tm_polygons() +

tm_shape(west_utm) +
tm_polygons(col = "red")

Figure 10: Haiti map highlighting
West department

spatial analysis in r 13

Checking spatial data

First let’s load the required packages and load some data.

library(mapview); library(sf);

adm2 <- st_read('Data/haiti/adm2.shp')
adm2_utm <- adm2 %>%

st_transform(crs = 32618)
hc_unprojected <- read_csv('Data/haiti/haiti-healthsites.csv') %>%

st_as_sf(coords = c("x", "y")) # Turn into spatial data
hc<- hc_unprojected %>% st_set_crs(4326)
north_utm <- adm2_utm %>% filter(adm1_en == "North")

Making maps with mapview

The mapview package provides an easy way to check your data in-
teractively. To create an interactive map you give the mapview() a
projected spatial file. Multiple objects is also easy, just add them to-
gether5. If you do not have any projection, the data will still be plot- 5 Note that mapview will automati-

cally reproject data to match existing
layers, so even though adm2 and
north_utm have different projections
they are in the same place.

ted but the basemaps won’t. You can also combine different types of
spatial objects and zoom to different areas. The map can be viewed in
the browser and a html file can be saved using RStudio. Export>Save
as webpage.

mapview(adm2) # Single map
mapview(adm2) + mapview(north_utm, col.regions = "red") # Multiple objects
mapview(hc_unprojected) # Not projected - no base map
mapview(adm2) + mapview(north_utm, col.regions = "red") + mapview(hc)

This command can be really useful to check whether your coordinates
are based in the same place. It should be noted that since mapview
will automatically project data to match existing layers, it won’t tell
you if the spatial data have a different crs.6 6 For spatial data that has been

read directly into R, the st_crs()
command can be used to compare
the projections of the data. If all you
receive is the coordinates as columns
in a csv file, then it is good to check
long and lat, followed by the UTM
of the area, following by mercator. If
none of these work, then you’ll need
to contact who sent you the data and
see if they can help.

Exercise 3

1. Load rivers.shp and adm2.shp
2. Create an interactive map with mapview.
3. Filter adm2 to the South area.
4. Add the South area to the map.

spatial analysis in r 14

Solution

rivers <- st_read('Data/haiti/rivers.shp')
adm2 <- st_read('Data/haiti/adm2.shp')

mapview(adm2) + mapview(rivers)

adm2_south <- adm2 %>% filter(adm1_en == "South")

mapview(adm2) + mapview(rivers) +
mapview(adm2_south, col.regions = "pink")

spatial analysis in r 15

sf spatial functions

The sf package also provides functions for manipulating spatial data.
There are a lot of spatial function included in the sf package but we
will first focus on a few of them. Nearly all of the functions have the
prefix st_. When using RStudio this means you can take advantage
of the auto-complete. Typing st_ then tab gives a list of possible
commands that will appear alongside a description of what they do.

capital <- st_read('Data/haiti/capital.shp')
st_crs(capital)

Create a 30k buffer around the capital
capital_buffer30k <- st_buffer(capital, dist = 30000)
Extract the centroids of a polygon
west_centroids <- st_centroid(west_utm)
Unify into one shape
west_oneshape <- st_union(west_utm)
Find the intersection between the west and capital buffer
intersect30k_utm <- st_intersection(west_utm, capital_buffer30k)
Find the difference between west and capital buffer
difference30k_utm <- st_difference(west_utm, capital_buffer30k)

West Department Buffer Centroids

Union Intersection Difference

Figure 11: Spatial manipulations
using sf

Now we will look at how to use the spatial functions to perform a
basic spatial analysis and visualisation in the practical session.

spatial analysis in r 16

Exercise 4

1. Create a 10k buffer around the capital and plot the 30 and 10k
buffer on the same map

2. Turn the 10k buffer into a single shape using st_union and plot.
3. Check the intersection between the Haiti and the 10km buffer and

plot.
4. Try some further manipulations of your choice.

spatial analysis in r 17

More with the sf package

Distances

The st_distance() command can be used to calculate straight line
distances. It can be used to calculate the distance between two single
points, a single point and multiple points, and between mutiple points.

This function always returns a matrix structure, where each ele-
ment represents a distance. For distances from a single point to a
single/multiple point(s), this matrix will have only one row which we
may redefine as a vector.

capital <- st_read('Data/haiti/capital.shp') # Load data point for capital
hc_utm <- hc %>% st_transform(crs = st_crs(capital)) # project hc

hc_dist <- st_distance(capital, hc_utm) %>% as.vector()

We can use min() to find the closest health centre to the capital.
min(hc_dist)

The distance can be added to the data frame using mutate.
hc_utm %>% mutate(hcdist = hc_dist)

Use filter to find out which health centre is closest
hc_utm %>% filter(hc_dist == min(hc_dist)) %>%

select(name)

Calculating the distance between two objects with multiple points will
return a matrix with multiple rows.

adm2_centroids <- st_centroid(adm2_utm)

adm2_hc_dist <- st_distance(adm2_centroids, hc_utm)

We can still use min() to find the smallest distance
min(adm2_hc_dist)

But we’ll need to learn a bit more R to interact with this object. We
can subset a matrix using square bracket notation matrix[rows,
columns]. We can get all the elements in the first row by writing
matrix[1,] all elements in the first column with matrix[,1]. In R
there is a helper operator : which can be used to get all the integers
between two numbers. So 1:4 gives 1, 2, 3, 4. We can take advantage
of this select the first 5 rows and the first 3 columns7. 7 This syntax can also be used for

data frames

spatial analysis in r 18

5 rows and 3 columns
adm2_hc_dist[1:5,1:3]

When we had a single column we could use min() to get the closest
health centre. However, now we have multiple locations we are more
likely to want to know the distance from each centroid to their nearest
health centre. This requires finding the minimum distance of each
column or row, depending on the order we put the objects into the
st_distance() function.

There are several ways to calculate the row or column minimums
but I’ll present one.8 Again we’re going to learn a little more base R. 8 If you’re interested then do.call(),

pmap_dbl(), or map_dbl() functions
can also be used

This time we’ll use the apply() command. This command applies a
function to each row or column of an object such as a matrix. The
option MARGIN tells R whether it is a column or a row. A value of 1 is
row, and 2 is the column.

Row minimum
nearest_centroid <- apply(adm2_hc_dist, MARGIN = 1, FUN = min)
Column minimum
nearest_healthcentre <- apply(adm2_hc_dist, MARGIN = 2, FUN = min)

Exercise 5

1. Load the capital.shp and adm1.shp
2. Reproject adm1.shp to UTM. (Use the st_crs() of capital)
3. Calculate the centroid of adm1.shp
4. Calculate this distance of the centroids from the capital.
5. What’s the maximum distance?

Calculating distance, especially the nearest distance, is a common task
in spatial analyses.

spatial analysis in r 19

Solution

capital <- st_read('Data/haiti/capital.shp')
adm1 <- st_read('Data/haiti/adm1.shp')

adm1_utm <- st_transform(adm1, crs = st_crs(capital))

adm1_centroid <- st_centroid(adm1_utm)

adm1_dist <- st_distance(adm1_centroid, capital)

max(adm1_dist)

	Spatial data models
	R for spatial analyses
	Packages
	Reading and writing spatial data
	Making maps with ggplots
	Making maps with tmap
	Spatial data manipulation
	Checking spatial data
	Making maps with mapview
	More with the sf package

